Курс высшей математики Типовой расчет

Приложения определенного интеграла: вычисление площади плоской фигуры (вывод формулы в полярной системе), длины дуги (вывод формулы в ДСК), объема тела вращения относительно Ox (вывод формулы)

Площадь в полярной:

За базовую фигуру в полярной системе принимается криволинейный сектор, ограниченный ρ=ρ(φ), φ=α φ=β. Предполагаем, что ρ=ρ(φ) – непрерывна на [α,β]. Для вычисления площади примем алгоритм составления интегральной суммы к последующим предельным переходом к определенному интегралу.

1. Разобьем отрезок [α,β] на n элементарных отрезков α= φ0< φ1< φ2<… < φn= β

Δ φk = φk-1- φk

2. На каждом из отрезков [φk-1- φk] k=1,n выбираем произвольную точку Θk и найдем ρk=ρ(Θk) k=1,n

Каждый криволинейный сектор заменим на круговой сектор с радиусом ρk

3. Площадь кругового сектора Sk= ρ2(Θk)Δ φk

S==  ρ2(Θk)Δ φk

4. За точное значение SOAB примем интегральную сумму при λ=

S=

Длина дуги в ДСК:

Пусть ф-ия y=f(x) определена и непрерывна на [a,b] и кривая L – график этой ф-ии. Требуется найти длину плоской кривой L, заключенной между вертикальными кривыми x = a, x = b

1. Рассмотрим произвольное разбиение [a,b] точками x0=a, x1, x2,…, xn=b на n частей. Через точку xk, k=1,n проведем вертикальные линии параллельные Oy до пересечения с кривой L. Дуга AB разбивается на n частей. Соединим соседние точки отрезками и получим ломанную, вписанную в дугу AB.

2. ln =  l ≈ ln - ломаная

3. Mk-1Mk – длина стягивающей хорды. Т.к. Mk-1 (xk-1; f(xk-1)), Mk (xk; f(xk))

Δl = | Mk-1 + Mk| =  по теореме Лагранжа

  ξk[xk-1, xk]

Вычисление объема тела вращения: Рассмотрим тело, образованное вращением вокруг оси Ox криволинейной трапеции aABb ограниченной кривой y=f(x), осью Ox и x = a, y = b

1. Рассмотрим произвольное разбиение [a,b] x0 = a < x1< x2<… < xn = b

обозначим Δxk = xk-xk-1

2. Пересекаем тело вращения плоскостями перпендикулярными Ox и получи круги, радиусы которых равны |yk|=|f(xk)| На каждом [xk-1- xk] выберем произвольным образом ξk S(ξk)= πf2(ξk) (S=πR2)

3. Предположим на любом частном отрезке ф-ия S=S(x) совпадает с S(ξk). Тогда объем частичного цилиндра: ΔVk = S(ξk)Δxk = πf2(ξk)Δxk 

4.

9. Понятие несобственного интеграла I рода.

Несобственным интегралом с бесконечным верхним пределом интегрирования (I рода) от непрерывной ф-ии y=f(x) на промежутке [a, ∞) называется предел интеграла.

I(b)= =


Задачи приводящие к понятию определенного интеграла