Неопределённый интеграл

Энергетика
Программа развития АЭС до 2050 г
Развитие ядерной индустрии
Ядерная энергетика
Перспективы развития атомной энергетики
Физические основы ядерной индустрии
Радиация проникающая
Энергосберегающие технологии
Развитие нетрадиционной энергетики
Солнечная энергетика в России
Расчет ветродвигательных установок
Строительная механика
Курс лекций по строительной механике
Задачи по строительной механике
История искусства
Культура ранних цивилизаций
Математика
Теория функций комплексной переменной
Интегральная теорема Коши
Ряды Тейлора и Лорана
Неопределённый интеграл
Несобственные интегралы
Вычисление определенного интеграла
Двойной интеграл
Курс лекций
Вычислить двойной интеграл
Найти объем тела
Операции над матрицами
Типовой расчет
Сопромат
Лекции по сопромату
Инженерная графика
Выполнение расчетно-графической работы
Разрезы на сборочных чертежах
Выполнение эскизов деталей
Последовательность создания
сборочного чертежа
Начертательная геометрия
Лекции по черчению
Порядок выполнения основной надписи
Вычерчивание контуров деталей
Лекальные кривые
Аксонометрическая проекция
Условие видимости на чертеже
Построение теней
Конические сечения
Разверка поверхностей
Электротехника, физика
Курс лекций по физике
Курсовая по электротехнике
Лабораторные работы по электронике
Лекции по электротехнике
Лекции по электронике
Первообразная функция. Функция F(x) называется первообразной для функции f(x) на интервале X=(a,b) (конечном или бесконечном), если в каждой точке этого интервала f(x) является производной для F(x), т.е. .

Множество первообразных функции f(x) называется неопределённым интегралом от этой функции и обозначается символом .

Простейшие правила интегрирования

Замена переменной в неопределённом интеграле ( интегрирование подстановкой).

Интегрирование по частям - приём, который применяется почти так же часто, как и замена переменной. Пусть u(x) и v(x) - функции, имеющие непрерывные частные производные.

Интегралы , где  - трансцендентная функция, имеющая дробно-рациональную или дробно-иррациональную производную (ln x, arctg x, arcctg x, arcsin x, arcos x)

Ещё один вид формул, которые обычно получаются с помощью интегрирования по частям, и используются для нахождения интегралов - рекуррентные соотношения. Если подынтегральная функция зависит от некоторого параметра n, и получено соотношение, которое выражает интеграл через аналогичный интеграл с меньшим значением n, то это соотношение и называется рекуррентным соотношением

Интегралы, содержащие квадратный трёхчлен .

Интегралы вида  () с помощью той же операции ( выделение полного квадрата) приводятся к одному из табличных интегралов

Интегралы вида  () берутся с применением той же техники

Интегрирование рациональных функций.

Интегрирование простых дробей. Определение рациональных функций и простых дробей: Простыми дробями называются рациональные функции следующих четырёх типов

Примеры

Интегрирование функций, рационально зависящих от .

Частные тригонометрические подстановки

Интегрирование произведения чётных степеней sin x, cos x.

Тригонометрические подстановки для интегралов вида .

Сопромат, механика, информатика. Теория, практика, задачи Математика, физика