Несобственные интегралы

Энергетика
Программа развития АЭС до 2050 г
Развитие ядерной индустрии
Ядерная энергетика
Перспективы развития атомной энергетики
Физические основы ядерной индустрии
Радиация проникающая
Энергосберегающие технологии
Развитие нетрадиционной энергетики
Солнечная энергетика в России
Расчет ветродвигательных установок
Строительная механика
Курс лекций по строительной механике
Задачи по строительной механике
История искусства
Культура ранних цивилизаций
Математика
Теория функций комплексной переменной
Интегральная теорема Коши
Ряды Тейлора и Лорана
Неопределённый интеграл
Несобственные интегралы
Вычисление определенного интеграла
Двойной интеграл
Курс лекций
Вычислить двойной интеграл
Найти объем тела
Операции над матрицами
Типовой расчет
Сопромат
Лекции по сопромату
Инженерная графика
Выполнение расчетно-графической работы
Разрезы на сборочных чертежах
Выполнение эскизов деталей
Последовательность создания
сборочного чертежа
Начертательная геометрия
Лекции по черчению
Порядок выполнения основной надписи
Вычерчивание контуров деталей
Лекальные кривые
Аксонометрическая проекция
Условие видимости на чертеже
Построение теней
Конические сечения
Разверка поверхностей
Электротехника, физика
Курс лекций по физике
Курсовая по электротехнике
Лабораторные работы по электронике
Лекции по электротехнике
Лекции по электронике

Несобственные интегралы.

Формула Ньютона-Лейбница для несобственного интеграла. В приведённых примерах мы сначала вычисляли с помощью первообразной функции определённый интеграл по конечному промежутку, а затем выполняли предельный переход. Объединим два этих действия в одной формуле

Признак сравнения. Пусть функции f(x) и g(x) интегрируемы по любому отрезку [a,b] и при  удовлетворяют неравенствам .

 

. На всём промежутке интегрирования ; интеграл  сходится (), поэтому исходный интеграл сходится

Признак сравнения в предельной форме

Абсолютная сходимость несобственных интегралов по бесконечному промежутку. В предыдущем разделе рассматривались интегралы от знакоположительных (знакопостоянных) функций; мы убедились, что для таких несобственных интегралов существуют хорошие методы исследования их сходимости.

Примеры исследования интегралов на абсолютную сходимость

Докажем, что для исходного интеграла абсолютной сходимости нет, т.е. что  расходится.

Несобственные интегралы от неограниченных функций (несобственные интегралы второго рода). Определение несобственного интеграла от неограниченной функции.

Особенность на правом конце промежутка интегрирования

Решение с применением формулы Ньютона-Лейбница:   - расходится, так как первообразная  обращается в бесконечность в точке x = -1.

Абсолютная и условная сходимость несобственных интегралов от разрывных функций определяется аналогично тому, как это было сделано для несобственных интегралов по бесконечному промежутку

Сопромат, механика, информатика. Теория, практика, задачи Математика, физика