Кратные, криволинейные, поверхностные интегралы.

Двойной интеграл. Определение двойного интеграла. Теорема существования двойного интеграла. Пусть на плоскости Oxy задана ограниченная замкнутая область D с кусочно-гладкой границей, и пусть на области D определена функция f(x, y).

Геометрический смысл двойного интеграла

Аддитивность

Теоремы об оценке интеграла

Вычисление двойного интеграла.

Двукратный (повторный) интеграл. Определение простой (правильной) области. Область D на плоскости Oxy будем называть простой (правильной) в направлении оси Oy, если любая прямая, проходящая через внутреннюю точку области D и параллельная оси Oy, пересекает границу D в двух точках.

Теорема о переходе от двойного интеграла к повторному

Теорема о замене переменных в двойном интеграле.

Двойной интеграл в полярных координатах.

Задачи на двойной интеграл.

Смысл этих задач - научиться быстро определять параметры  (в декартовых координатах) и  (в полярных координатах), необходимые для перехода от двойного интеграла к повторному.

Этот пример проще решается по второй формуле

Приложения двойного интеграла. Вычисление площадей плоских областей.

Вычисление объёмов. Объём тела, ограниченного сверху и снизу поверхностями z = f1(x,y), z = f2(x,y), , с боков - цилиндрической поверхностью с образующими, параллельными оси Oz, равен ; эта формула очевидно следует из геометрического смысла двойного интеграла. Основной вопрос, который надо решить - на какую координатную плоскость проектировать тело, чтобы выкладки были наиболее простыми.

Вычисление площади поверхности. Пусть в пространстве задана кусочно-гладкая поверхность , однозначно проектирующаяся в область D на плоскости Оху. Пусть эта поверхность задаётся уравнением . Тогда площадь этой поверхности выражается формулой

.

Механические приложения двойного интеграла. Будем считать, что D - неоднородная плоская пластина с поверхностной плотностью материала в точке Р равной . В механике  определяется так. Точка Р окружается малой областью S, находится масса m(S) и площадь этой области (площадь тоже будем обозначать буквой S), и .

Сопромат, механика, информатика. Теория, практика, задачи Математика, физика