Солнечная энергетика в России Использование водной энергии земли

Энергетика
Программа развития АЭС до 2050 г
Развитие ядерной индустрии
Ядерная энергетика
Перспективы развития атомной энергетики
Физические основы ядерной индустрии
Радиация проникающая
Энергосберегающие технологии
Развитие нетрадиционной энергетики
Солнечная энергетика в России
Расчет ветродвигательных установок
Строительная механика
Курс лекций по строительной механике
Задачи по строительной механике
История искусства
Культура ранних цивилизаций
Математика
Теория функций комплексной переменной
Интегральная теорема Коши
Ряды Тейлора и Лорана
Неопределённый интеграл
Несобственные интегралы
Вычисление определенного интеграла
Двойной интеграл
Курс лекций
Вычислить двойной интеграл
Найти объем тела
Операции над матрицами
Типовой расчет
Сопромат
Лекции по сопромату
Инженерная графика
Выполнение расчетно-графической работы
Разрезы на сборочных чертежах
Выполнение эскизов деталей
Последовательность создания
сборочного чертежа
Начертательная геометрия
Лекции по черчению
Порядок выполнения основной надписи
Вычерчивание контуров деталей
Лекальные кривые
Аксонометрическая проекция
Условие видимости на чертеже
Построение теней
Конические сечения
Разверка поверхностей
Электротехника, физика
Курс лекций по физике
Курсовая по электротехнике
Лабораторные работы по электронике
Лекции по электротехнике
Лекции по электронике

Солнечная энергия Всего за три дня Солнце посылает на Землю столько энергии, сколько её содержится во всех разведанных запасах ископаемого топлива, а за 1 с -170 млрд Дж. Большую часть этой энергии рассеивает или поглощает атмосфера, особенно облака, и только треть её достигает земной поверхности. Вся энергия, испускаемая Солнцем, больше той её части, которую получает Земля, в 5 млрд раз. Но даже такая «ничтожная» величина в 1 600 раз больше энергии, которую дают все остальные источники, вместе взятые. Солнечная энергия, падающая на поверхность одного озера, эквивалентна мощности крупной электростанции.

Гелиоэнергетика. «Собрать», сконцентрировать солнечную систему может каждый. В ясный солнечный день линза соберет лучи солнца в яркое пятнышко. Температура там такая, что лучи прожигают бумагу. Концентрацией солнечной радиации, преобразованием ее в другие виды энергии, удобные для практического применения, занимается гелиоэнергетика. От Солнца на Землю идет тепловой поток, энергия которого измеряется астрономической цифрой.

Концентраторы солнечного света. С детства многие помнят, что с помощью собирательной линзы от солнечного света можно зажечь бумагу. В промышленных установках линзы не используются: они тяжелы, дороги и трудны в изготовлении.

Использование солнечной энергии

Самый важный компонент системы – теплоноситель. Различают коллекторы с естественной и принудительной (с помощью насосов) его циркуляцией. Широкое применение находят солнечные установки не только с водой, но и с воздухом, а также с низкокипящими жидкостями типа аммония

К активным тепловым солнечным системам относятся плоские, а также параболические зеркальные концентраторы с одной и двумя степенями свободы и со специальными приводами, позволяющими системе «следить» за положением Солнца на небосводе

В башенных СЭС используется центральный приемник с полем гелиостатов, обеспечивающих степень концентрации в несколько тысяч. Система слежения за Солнцем довольно сложна, т. к. требуется вращение вокруг двух осей. Управление системой осуществляется с помощью ЭВМ. В качестве рабочего тела в тепловом двигателе обычно используется водяной пар с температурой до 550 °С, воздух и другие газы – до 1000 °С, низкокипящие органические жидкости (в том числе фреоны) – до 100 °С, жидкометаллические теплоносители – до 800 °С.

Солнечные коллекторы и аккумуляторы теплоты. Основным конструктивным элементом солнечной установки является коллектор, в котором происходит улавливание солнечной энергии, ее преобразование в теплоту и нагрев воды, воздуха или какого-либо другого теплоносителя. Различают два типа солнечных коллекторов – плоские и фокусирующие.

Мощным реактором взрывного типа является импульсный реактор ЯГУАР, который построен во ВНИИ технической физики в городе Снежинске (Челябинская обл.).

Гелиоустановки на широте 60°. Одним из лидеров практического использования энергии Солнца стала Швейцария. Здесь построено примерно 2 600 гелиоустановок на кремниевых фотопреобразователях мощностью от 1 до 1000 кВт и солнечных коллекторных устройств для получения тепловой энергии. Программа, получившая наименование «Солар-91» и осуществляемая под лозунгом «За энергонезависимую Швейцарию!», вносит заметный вклад в решение экологических проблем и энергетическую независимость страны, импортирующей сегодня более 70 процентов энергии.

Солнечные установки коммунально-бытового назначения Солнечные водонагревательные установки. Сейчас во всем мире в эксплуатации находится более 5 млн солнечных водонагревательных установок, используемых в индивидуальных жилых домах, централизованных системах горячего водоснабжения жилых и общественных зданий, включая гостиницы, больницы, спортивно-оздоровительные учреждения и т. п. Налажено промышленное производство солнечных водонагревателей в таких странах, как Япония, Израиль, Кипр, США, Австралия, Индия, Франция, ЮАР и др.

Активные гелиосистемы отопления зданий. В состав активной системы солнечного отопления входят коллектор солнечной энергии, аккумулятор теплоты, дополнительный (резервный) источник энергии, теплообменники для передачи теплоты из КСЭ в аккумулятор и из него к потребителям, насосы или вентиляторы, трубопроводы с арматурой и комплекс устройств для автоматического управления работой системы. Солнечный коллектор обычно устанавливается на крыше дома, остальное оборудование гелиосистемы отопления и горячего водоснабжения дома размещается в подвале.

Фотонный кнут Чтобы в полной мере использовать лучистую энергию Солнца, нужно превратить ее в какой-либо иной вид. Сохранить световой луч в «банке» еще никому не удавалось. Один из наиболее распространенных и перспективных способов преобразования света – фотоэлектрический: фотоны передают свою энергию электронам в полупроводниках. Возникает электрический ток.

Развитие солнечной энергии в России В России в настоящее время имеется восемь предприятий, имеющих технологии и производственные мощности для изготовления 2 МВт солнечных элементов и модулей в год.

Геотермальная энергия В Турции (г. Анталия) с 24 по 30 апреля 2005 г. с большим успехом прошел Всемирный геотермальный конгресс WOC-2005 под девизом «Геотермальная энергия: локальная, возобновляемая, экологически чистая». В этом форуме приняло участие более 1 400 специалистов из 81 страны шести континентов, было представлено более 700 научных докладов. Во время конгресса работала выставка последних достижений в области геотермии, где было представлено более 45 ведущих компаний мира.

Гидротермальные системы К категории гидротермальных конвективных систем относят подземные бассейны пара или горячей воды, которые выходят на поверхность земли, образуя гейзеры, сернистые грязевые озера и фумаролы. Образование таких систем связано с наличием источника теплоты горячей или расплавленной скальной породы, расположенной относительно близко к поверхности земли. Над этой зоной высокотемпературной скальной породы находится формация из проницаемой горной породы, содержащая воду, которая поднимается вверх в результате ее подстилающей горячей породы.

Геотермальная энергия – энергия будущего Пейзаж графства Корнуолл, расположенного на юго-западе Англии, известен не только своей первозданной, ничем не испорченной красотой. Здесь нетрудно разыскать специалистов по натуральным, экологически безопасным, но тем не менее высокоэффективным энергетическим системам, которые еще не получили широкого распространения. Но очень скоро применение этих систем станет таким же обычным делом, как сегодня использование бензина для приведения автомобилей в движение

Геотермальное теплоснабжение В последние годы в мире отмечается значительный рост мощностей геотермального теплоснабжения. Системы геотермального централизованного теплоснабжения в основном применяются в Европе (лидеры — Франция и Испания), а также в Китае, Японии и Турции. В США преобладают системы геотермального отопления отдельных домов.

Энергия биомассы Понятие «биомасса» относят к веществам растительного или животного происхождения, а также отходам, получаемым в результате их переработки. В энергетических целях энергию биомассы используют двояко: путем непосредственного сжигания или путем переработки в топливо (спирт или биогаз). Есть два основных направления получения топлива из биомассы: с помощью термохимических процессов или путем биотехнологической переработки. Опыт показывает, что наиболее перспективна биотехнологическая переработка органического вещества. В середине 80-х г. в разных странах действовали промышленные установки по производству топлива из биомассы. Наиболее широкое распространение получило производство спирта.

Практические советы Как уже отмечалось, решающую роль в развитии процесса ферментации играет температура: нагрев сырья с 15 °С до 20 °С может вдвое увеличить производство энергоносителя. Поэтому часть генераторов имеет специальную систему подогрева сырья, однако большинство установок не оборудовано ею, они используют лишь тепло, выделяемое в процессе самого разложения органических веществ. Одним из важнейших условий нормальной работы ферментатора является наличие надежной теплоизоляции. Кроме того, необходимо свести к минимуму потери тепла при очистке и наполнении бункера ферментатора.

Мини-теплоэлектростанция на отходах. Биогазовые технологии – радикальный способ обезвреживания и переработки разнообразных органических отходов растительного и животного происхождения, включая экскременты животных и человека, с одновременным получением высококалорийного газообразного топлива – биогаза и высокоэффективных экологически чистых органических удобрений. Биогазовые технологии – это решение проблем экологии, энергетики, агрохимии и капитала.

Биоэнергетическая технология. Биогазовые технологии – радикальный способ обезвреживания и переработки разнообразных органических отходов растительного и животного происхождения, включая экскременты животных и человека, с одновременным получением высококалорийного газообразного топлива – биогаза и высокоэффективных экологически чистых органических удобрений. Биогазовые технологии – это решение проблем экологии, энергетики, агрохимии и капитала.

Биоэнергетические установки, производимые в России, и их краткие технические характеристики Установка предназначена для переработки всех видов органических отходов крестьянского или фермерского хозяйства, имеющего на своем подворье до 5-6 голов крупного рогатого скота или 50-60 голов свиней, или 500-600 голов птицы, с получением газообразного топлива (биогаза) и экологически чистых органических удобрений.

Использование водной энергии земли Три четверти земной поверхности занято водой, лишь одна четверть сушей. Поэтому человека привлекала проблема полезного использования воды, в том числе и в энергетике. Время применения гидравлических двигателей насчитывает более 2000 лет. Сначала как источник механической энергии использовались отдельные водяные колеса, затем отдельные водяные турбины и, наконец, гидростанции. В России насчитывается 575 тыс. рек протяженностью более 4 млн км. По количеству и длине рек Россия занимает первое место в мире. Их энергия, технически пригодная к использованию, составляет около 4 000 млрд кВт∙ч. По запасам гидроэнергии Россия превосходит все страны. Например, следующие за Россией США и Бразилия имеют гидроэнергетические запасы, примерно в 1,6 раза меньшие.

Энергия Мирового океана Известно, что запасы энергии в Мировом океане колоссальны, ведь две трети земной поверхности (361 млн км2) занимают моря и океаны – акватория Тихого океана составляет 180 млн км2 Атлантического 93 млн км2, Индийского 75 млн км2. Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 °, имеет величину порядка 1026 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 1018 Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Энергия морских течений. Неисчерпаемые запасы кинетической энергии морских течений, накопленные в океанах и морях, можно превращать в механическую и электрическую энергию с помощью турбин, погруженных в воду (подобно ветряным мельницам, «погруженным» в атмосферу).

Биохимическая энергия В океане существует замечательная среда для поддержания жизни, в состав которой входят питательные вещества, соли и другие минералы. В этой среде растворенный в воде кислород питает всех морских животных от самых маленьких до самых больших, от амебы до акулы. Растворенный углекислый газ точно так же поддерживает жизнь всех морских растений от одноклеточных диатомовых водорослей до достигающих высоты 200-300 футов (60-90 м) бурых водорослей.

Выгоды использования энергии океана В океане, который составляет 71 % поверхности планеты, потенциально имеются различные виды энергии: энергия волн и приливов, энергия химических связей газов, питательных веществ, солей и других минералов, скрытая энергия водорода, находящегося в молекулах воды, энергия течений, спокойно и нескончаемо движущихся в различных частях океана; удивительная по запасам энергия, которую можно получать, используя разницу температур воды океана на поверхности и в глубине, и их можно преобразовать в стандартные виды топлива.

Низкопотенциальные источники тепла (НИТ) Насосы тепла Что такое тепловой насос? Сейчас для обогрева домов в сельской местности инженеры и ученые предлагают такие схемы. В землю закапывают трубы, и находящаяся в них жидкость, например вода или антифриз, получает ту же температуру, что и грунт. В земле на глубине метр-два всегда тепло, даже в сильные морозы там 6-8 °С тепла, а то и больше. От теплособирающих труб тепло передается фреону во втором контуре, и он испаряется. Установленный в доме компрессор сжимает газ, тот конденсируется в жидкость, а тепло конденсации служит для обогрева помещения. Потом эта жидкость испаряется за счет подземного тепла, и цикл повторяется.

Будущие источники энергии Энергия из космоса Получать и использовать «чистую» солнечную энергию на поверхности Земли мешает атмосфера. Само собой напрашивается решение: разместить солнечные энергостанции в космосе, на околоземной орбите. Там не будет атмосферных помех, невесомость позволит создавать многокилометровые конструкции, которые необходимы для «сбора» энергии солнца. У таких станций есть большое достоинство. Преобразование одного вида энергии в другой неизбежно сопровождается выделением тепла, и сброс его в космос позволит предотвратить опасное перегревание земной атмосферы.

Водородная экономика Один из самых необычных и, пожалуй, самых привлекательных сценариев энергетического будущего человечества открывает проект «Водородная экономика». Его суть заключается в замене ископаемого топлива водородом. Физический и химический смысл проекта ясен: основная энергия в нефти, газе, каменном угле и дереве запасена в виде углеводородов – соединений углерода с водородом. И не углерод, а именно водород дает при сжигании наибольшее количество тепловой энергии, превращаемой затем в механическую.

Методика расчетов для проектирования нвиэ Проектирование систем солнечной энергии Проектирование пассивных систем солнечного отопления зданий. Исходные данные и объем проектирования

Определение количества теплоты солнечной радиации, поглощаемой системой ПСО За элемент строения, который поглощает солнечную радиацию, принимают теплоприемник типа «стена Тромба».

Определение коэффициента эффективности передачи теплоты солнечной радиации

Определение коэффициента замещения теплоты, расходуемой на отопление помещений с системой пассивного солнечного обогрева (ПСО), теплотой солнечной радиации

Анализ технико-экономической эффективности системы ПСО

Проектирование активных систем солнечного горячего водоснабжения Общие сведения. Задание на проект содержит характеристику и количество коммунально-бытовых потребителей теплоты, тип промышленного комплекса, характеристику топлива. В задании на проект рекомендуется предусмотреть несколько разных потребителей теплоты.

Оборудование установок солнечного горячего водоснабжения

Схемы систем горячего водоснабжения Установка солнечного горячего водоснабжения сезонного действия без дублера с принудительной циркуляцией состоит из солнечных коллекторов, скоростных теплообменников, циркуляционных насосов теплоприемного контура, насосов контура горячего водоснабжения, расширительного бака, баков-аккумуляторах, регулирующей и водоразборной арматуры.

Заполнение теплоприемного контура производится из теплосети. Для детских дошкольных учреждений рекомендуется применять установку с двумя отборами проб воды разных температур (рис. 1.14): для кухни +50...+55 °С с дублированием нагрева в проточном электроводоподогревателе, для умывальников и душевых – +40 °С с возможностью автоматического переключения подачи воды из верхней или средней секции бака–аккумулятора и зависимости от их температуры.

Расчетные температуры в обратной магистрали теплосети составляют в зимний период 70, в летний -60 0С. Поэтому необходимо на выходе из поля солнечных модулей получить температуру теплоносителя до 80-85 0С. Обеспечить такие значения с помощью простых плоских солнечных коллекторов затруднительно даже с применением селективных покрытий теплоприемных панелей. В связи с этим принято решение использовать модули с параболоцилиндрическими концентраторами и вакуумированными трубчатыми приемниками солнечного излучения.

Проектирование систем геотермального теплоснабжения Теплота геотермальных вод может использоваться для отопления, вентиляции, горячего водоснабжения, кондиционирования воздуха. При проектировании систем геотермального теплоснабжения необходимо определить расчётную потребность в теплоте, а также учесть запасы геотермальных вод и их протезируемые ресурсы для заданного района.

Расчет и подбор отопительных приборов

Закрытые системы геотермального теплоснабжения Закрытые геотермальные системы, обеспечивающие только горячее водоснабжение. В зависимости от расположения места сброса и источника питьевой воды могут быть использованы три вида схемного решения.

Закрытые геотермальные системы теплоснабжения, обеспечивающие только отопление. При непитьевом качестве геотермального теплоносителя и отсутствии воды питьевого качества возможно применение систем теплоснабжения, обеспечивающих только отопление зданий и сооружений. Схема двухтрубной системы с зависимым присоединением отопления (рис. 2.10) применима при отсутствии угрозы интенсивной коррозии и солеотложения. Система обеспечивает только отопление.

Комплексные геотермальные системы теплоснабжения Комплексные геотермальные системы теплоснабжения могут осуществлять отопление и горячее водоснабжение гражданских, промышленных зданий и обеспечение технологических нужд производств (автомойки, прачечные и пр.), а также отопление теплиц; они способны обеспечить существенное повышение технико-экономических показателей термоводозаборов с одновременным достижением дополнительного социального эффекта.

Проектирование ветроэнергетических установок Новое – это хорошо забытый...ветер. История использования человеком энергии ветра столь же продолжительна, как и история применения энергии воды. Издавна люди сооружали ветряные мельницы для размола зерна, подъема воды из глубоких колодцев. Более пяти тысяч лет тому назад подобные агрегаты строились в Древнем Египте. Конструкция ветряных мельниц без каких-то существенных изменений сохранялась сотни и тысячи лет. До сих пор в Англии действует ветряная мельница, построенная еще в 1665 г.

Уникальное изобретение в ветроэнергетике Еще в 1928 г. Владимир Иванович Вернадский написал, что человечество становится «геологической силой», т. е. его влияние на процессы, происходящие на планете, соизмеримы с природными катаклизмами. По расчетам демографов, к 17 июля 1999 г. население нашей планеты составило шесть млрд человек.

Исходные данные и объем проектирования

Расчет ветродвигательных установок

Проектирование аккумуляторов теплоты Аккумулятором теплоты называется устройство (или совокупность устройств), которые обеспечивают процессы накопления, сбережения и передачи тепловой энергии в соответствии с требованиями потребителя. Изменение энтальпии теплоаккумулирующего материала может происходить как с изменением его температуры, так и без него в процессе фазовых превращений.

Расчет основных показателей ТАМ Исходными данными расчета являются: массовый расход теплоносителя G, кг/с; промежуток времени протекания теплоносителя τ, с; масса Мm теплоаккумулирующего материала, кг; температура, теплоносителей tг вых на выходе из аккумулятора и горячего tх вх на входе в аккумулятор. Кроме того, должны были заданы тип ТАМ и вид теплоносителя.

Проектирование биогазовых установок Биомасса является сконцентрированной энергией солнца. Ее можно преобразовать в разнообразные виды топлива: жидкое, газообразное или же использовать непосредственно для получения теплоты. В состав биомассы входят сельскохозяйственные продукты, отходы сельскохозяйственных и промышленных предприятий, лесоматериалы, морские растения. Биомасса относится к местным источникам энергии.

Биоэнергетические установки (БЭУ) и биоэнергетические заводы (БЭЗ) предназначены для утилизации отходов сельскохозяйственных предприятий, пищевой промышленности и бытового сектора с производством горючего газа и органических высокоэффективных удобрений, образующихся в результате метанового сбраживания навоза животных, помета птиц и растительных остатков в анаэробных условиях.

Сопромат, механика, информатика. Теория, практика, задачи Математика, физика