Энергосберегающие технологии Системы теплоснабжения Региональный опыт энергосбережения Повышение энергоэффективности теплосетей Развитие нетрадиционной энергетики

Фотонный кнут

Чтобы в полной мере использовать лучистую энергию Солнца, нужно превратить ее в какой-либо иной вид. Сохранить световой луч в «банке» еще никому не удавалось. Один из наиболее распространенных и перспективных способов преобразования света – фотоэлектрический: фотоны передают свою энергию электронам в полупроводниках. Возникает электрический ток.

Как это происходит? Запрещенные энергетические зоны в некоторых полупроводниках по ширине как раз соответствуют величине энергии кванта света. Запрещенная зона – это потенциальный барьер, который необходимо преодолеть электрону при перескоке с одного на другой атом кристаллической решетки. Поглотив фотон, электрон обретает подвижность. Значит, может возникнуть электрический ток. Ведь по определению ток – это направленное движение электрических зарядов.

Однако фотоиндуцированные электроны могут с равной вероятностью двигаться как в одну, так и в другую сторону. ЭДС разных знаков компенсируют друг друга. Тока не будет.

Если же теперь совместить два полупроводника (чаще всего используется кремний), легированных разными примесями (одна, в силу несовпадающих валентностей, привносит в исходное вещество нескомпенсированные электроны – получается полупроводник n-типа, а другая, чья валентность меньше, приводит к появлению дырок, носителей положительных зарядов – полупроводник р-типа), на их границе образуется n-р–переход. Света нет – ток отсутствует. Как только полупроводниковый диод осветить, потекут избыточные электроны в р-зону.

Лучше дешевле и эффективней. Есть такая «вывернутая» присказка: лучше быть здоровым и богатым, чем бедным и больным. Следуя этому принципу, и развивается фотоэнергетика. Еще недавно фотоэлектроэнергия обходилась очень дорого. До 1982 г. в нашей стране фотоэлементы выпускались только для космических аппаратов. В наземные преобразователи попадало лишь то, что по каким-то причинам выбраковывали основные заказчики.

Наконец появилось опытное производство дисковых солнечных элементов для народнохозяйственных нужд. Себестоимость солнечной электроэнергии уменьшилась в 3-4 раза. Но все равно 7-10 р. за 1 Вт установленной мощности (таковы сегодняшние затраты) – это очень дорого. Идет поиск способов удешевления солнечных элементов. Один из примеров тому – интересная разработка советского ученого А. Степанова. Он предложил высококачественный кремний не выращивать в виде слитков, которые приходится потом распиливать на круглые пластины, те же, в свою очередь, тщательно полировать, затрачивая много энергии и расходуя впустую материал, а вытягивать тонкими лентами из расплава. При таком способе не только снижается себестоимость фотоэлементов, но и увеличивается эффективность солнечных батарей. Ведь ленты можно смыкать вплотную, а между дисковыми элементами всегда остается неиспользованная площадь. Однако в буквальном смысле камень преткновения солнечной электроэнергетики – низкий КПД кремниевых элементов. Дело в том, что лишь небольшая часть солнечной энергии поглощается электронами в полупроводниках. Львиная доля падающего излучения идет на нагрев фотоэлемента (что, между прочим, ухудшает его фотоэлектрические характеристики), какая-то часть отражается, какая-то пронизывает его насквозь. Вспомним, ведь запрещенная полоса в полупроводнике довольно узка. А значит, и невелико «энергетическое меню» электронов. Кроме того, значительные потери энергии в полупроводниках связаны с рекомбинацией электронов и дырок (компенсацией разноименных зарядов).

В результате КПД стандартных солнечных элементов не превышает 10 %. Впрочем, уже есть опытные образцы, полученные в лабораториях М. Кагана, А. Зайцевой (НПО «Квант»), КПД которых 15-17 %. И это не предел. Экспертами посчитано, что предельный КПД для солнечных элементов с п-р–переходом составляет 27-30 %.

Особенно перспективными считаются полупроводниковые преобразователи с так называемыми гетеропереходами. Они изготовлены из двух различных по химическому составу полупроводников (в отличие от описанного одного, но легированного с двух сторон разными примесями). Соответственно ширина запрещенных зон в каждом различна. В области n-р–перехода возникает, за счет взаимного сглаживания потенциальных барьеров, дополнительная фото-ЭДС. Коллектив ученых, работающий под руководством академика Ж. Алферова, получил на фотодиодах с гетеропереходом «арсенид алюминия – арсенид галлия» КПД около 20 %.

Примечательно, что при нагреве такие фотодиоды не ухудшают свои фотоэлектрические свойства. Они устойчиво работают даже при 1600- кратном уплотнении потока солнечной энергии.

Оказывается, можно создать фотопреобразующие устройства, которые будут утилизировать практически весь падающий на них свет. Они обладают так называемой варизонной структурой, то есть запрещенная зона у них переменной ширины. Этого добиваются, вводя в разные зоны полупроводника различные примеси. В таком случае фото-ЭДС генерируется не на одной поверхности n-р–перехода, а в целой пространственной области, для разных точек которой – разные запрещенные зоны. В ней для любого кванта найдется укромное местечко, где его без помех поглотит электрон.

Идет поиск и новых – дешевых материалов для фотоэлементов. Весьма перспективны, по мнению некоторых исследователей, полупроводниковые соединения меди, кадмия, серы. Преобразователи, полученные на их основе, недороги, но – КПД у них порядка 5 %, и материалы нестабильны, разрушаются под воздействием окружающей среды. Сложная, дорогостоящая герметизация сводит на нет полученную экономию.

Можно уменьшить себестоимость гелиоэлектроэнергии другим способом. Скажем, заставить Солнце... ярче освещать фотопреобразователи. Для этого используют устройства, именуемые концентраторами. Они собирают солнечные лучи с большой площади и направляют их на относительно небольшие по размеру собственно фотопреобразующие панели.

Параболический концентратор. Уже само название говорит о том, что его чаша представляет собой параболоид. Если направить эту чашу на Солнце, то практически все лучи, отразившиеся от ее внутренней зеркальной поверхности, соберутся в небольшой области возле фокуса параболоида. Коэффициент концентрации (отношение площади, с которой собирались лучи, к той площади, на которой они сконцентрировались), у такого устройства велик. Это, конечно, хорошо. Но в то же время приводит к чрезмерному перегреву фотоэлемента. Приходится предусматривать систему охлаждения. Да и система автоматического слежения за Солнцем тоже нужна. Чуть-чуть отклонится Солнце от оси симметрии параболоида – сразу же происходит существенная потеря фотоэлектрической мощности.

К другому типу концентраторов – преломляющему – относится линза френеля. Она состоит из целого набора призм, составленных вершинами вместе, так что поверхность линзы, обращенная к Солнцу, напоминает растянутую гармошку.

Солнечные лучи преломляются в призмах, причем всегда находится расположенная к Солнцу под таким углом, что преломившиеся в ней лучи собираются на фотоэлементе, установленном за вершиной линзы. Вот почему линзу Френеля не нужно поворачивать в вертикальной плоскости, она одинаково хорошо работает при высоко- и низкостоящем Солнце.

Сегодня появляются так называемые плоские линзы Френеля. У них нет «гармошки». С виду это обыкновенные призмы. Однако некоторые сегменты в такой призме обработаны жестким излучением, показатель преломления в них изменился. А направление преломленного луча, как известно, зависит не только от угла падения (в линзе Френеля его задает «гармошка»), но и от показателя преломления вещества.

Одна из наиболее интересных разработок последних лет – призмакон. Это тоже призма. Но угол при ее вершине имеет строго определенную величину. В зависимости от показателя преломления вещества, из которого сделана призма (чаще всего это органическое или оптическое стекло), угол выбирается таким, чтобы любой луч, попавший в призму, уже не мог пройти через отражающую поверхность и оказывался в ловушке. Ему остается один путь – к собирающей грани призмы.

Принцип работы призмакона основан на явлении полного внутреннего отражения, когда луч, входящий в оптически более плотную среду, отклоняется настолько, что следующую границу раздела ему преодолеть уже труднее, а при определенном, выше критического для данного вещества угле падения – невозможно. Призмаконы были разработаны в НПО «Квант», в лаборатории кандидата технических наук Э. Тверьяновича.

Когда посредники не нужны. Всегда ли нужно ломать голову, каким образом преобразовать свет в нужный нам вид энергии? Фотоны без каких-либо посредников «сами по себе» поглощаются атомами и в конечном счете увеличивают тепловую энергию вещества. Надо только суметь воспользоваться даровым теплом, и тогда не нужно будет тратить дефицитную электроэнергию (а мы уже знаем, что и солнечная электроэнергия недёшева), допустим, на обогрев помещений.

Улавливают и переносят солнечное тепло к месту использования коллекторы. Простейший представляет собой теплообменник, в котором циркулирует жидкость. Сверху он покрашен в черный цвет, чтобы лучше поглощать солнечное излучение, и закрыт стеклом, не пропускающим инфракрасные лучи. Поскольку максимум излучения Солнца приходится на видимую часть спектра, нехитрое устройство поглощает намного больше энергии, чем отдает в пространство. Оно аккумулирует тепло, которое теплоноситель (чаще всего вода, текущая по теплообменным трубам) передает потребителю.

Как правило, коллекторы никто не поворачивает вслед за Солнцем. Их закрепляют жестко, ориентируют на юг и устанавливают под углом к горизонту, равным углу широты местности.

Солнечное тепло «малокалорийно», оно рассеяно. Весьма заманчиво снабдить коллекторы концентраторами. Если это большие параболические зеркала, с их помощью можно испарять воду и разогревать пар до высоких температур. Уже немало гелиостанций, на которых ток вырабатывается генераторами, вращаемыми паровой турбиной (как видите, без электроэнергии все-таки не обошлось). Солнце, кроме того, плавит металлы, в гелиопечах получают особо чистые химические вещества.

Промышленный фотосинтез. По масштабам использования солнечной энергии нам еще далеко до растений. Ежегодно в деревьях, кустарниках, траве, водорослях накапливается 3∙1021 Дж законсервированной с помощью фотосинтеза энергии. Это в 10 раз больше того, что тратится за тот же срок человечеством.

Заманчиво, конечно, использовать живой фотохимический потенциал. Однако не губить же зеленые богатства планеты? Нужно создавать в энергетические плантации. В будущем, видимо, после решения продовольственной проблемы быстрорастущие виды растений станут высаживать специально «на откорм» микроорганизмам и в результате их жизнедеятельности получат ценное топливо – метан.

Впрочем, КПД фотосинтеза растений очень мал – в среднем 0,1 %. Есть другие перспективные направления биогелиоэнергетики. Например, несколько лет назад открыто явление биофотолиза – разложение воды на водород и кислород под действием солнечного света при активном посредничестве выделенных из растений фотосинтезирующих веществ. Другой необходимый компонент – фермент гидрогенеза, имеющий сродство к атомам водорода. Именно он «убеждает» фотосинтезирующие вещества приступить к гидролизу. Задача исследователей – научиться создавать условия, при которых этот процесс идет стабильно. Ведь изъятые из клетки хлоропласты быстро разрушаются на свету.

Довольно хорошо отработаны микробиологические способы разложения воды. Открыты и уже используются микроорганизмы, результат жизнедеятельности которых – водород. В специальных емкостях для них размножают корм – микроскопические водоросли определенных видов. Водоросли поглощают солнечный свет, осуществляют фотосинтез, а микроорганизмы, поедающие их, разлагают воду, выделяют водород. Водород – это экологически чистое химическое топливо. При его сгорании получается исходный продукт – вода. Энергетический круговорот воды может продолжаться до тех пор, пока светит Солнце.

Успешному развитию фотоэлектрического метода преобразования солнечной энергии в электрическую в наземных условиях способствовала благоприятная ситуация в связи с развитием космической техники, ростом потребностей в источниках питания, особенно автономных потребителей небольшой мощности, расположенные в местах, удаленных от централизованных энергосистем. Одной из определяющих характеристик возможности широкого использования фотоэлектрических преобразователей в народном хозяйстве является их удельная стоимость. Ближайшей задачей является обеспечение КПД фотопреобразователей на монокристаллическом кремнии до 12 % при стабильности параметров в течение 15-20 лет. В перспективе КПД солнечных элементов на кремнии можно повысить до 25 % при обычной освещенности и до 30 % при концентрированном солнечном излучении. Для повышения КПД ставится вопрос о замене кремния арсенидом галлия. В этом случае КПД солнечного элемента получен 26,6 % и ожидается его повышение до 30 - 35 %. По мнению экспертов, ежегодное производство солнечных элементов превысит 600 МВт в 2000 г.

Предполагается, что в Японии через 20 лет будет производиться фотоэлектрическая система с общей установленной мощностью 4600 МВт.

Активно осуществляется внедрение фотоэлектрических систем в энергетику Европы. Крупнейшая итальянская фирма «Италосоляр» выпускает солнечные фотоэлектрические модули общей мощностью 1 МВт. Принципиально важно и то, что потребитель получает не отдельные модули, а фотоэлектрическую систему вместе с электропотребляющим устройством – холодильником, насосом для перекачки воды, телевизором, туристическим домиком. В России выпускается очень мало солнечных элементов, которых хватило пока лишь для того, чтобы покрыть крыши пяти экспериментальных домов.


Ветроэнергетика в России