Лекции по сопромату Моменты инерции сечения Деформации и перемещения при кручении валов Общие понятия о деформации изгиба Расчет статически неопределимых балок Потенциальная энергия деформации Понятие об устойчивости

Построение эпюр изгибающих моментов и поперечных сил.

Рассмотрим пример построения эпюр поперечных сил Q и изгибающих моментов Mx.

1. Изображаем расчетную схему (рис. 3.9, а).

2. Определяем реакции опор. Первоначально выбираем произвольное направление реакций (рис. 3.9, а)

/t3_5.gif

Так как реакция RB с минусом, изменяем выбранное направление на противоположное (рис. 3.9, б), а про минус забываем.

/3_9.gif

Проверка:

/t3_6.gifY = 0,
RA - 2qa + RB - qa = qa - 2qa + 2qa - qa = 0.

3. Расчетная схема имеет три силовых участка.

I участок АС: 0 < z1 < a. Начало координат выбираем в крайней левой точке А. Рассмотрим равновесие отсеченной части бруса (рис. 3.10).

В сечении возникают внутренние усилия:

поперечная сила

Q = qa = const

и изгибающий момент

Mx = qa * z1
при z1 = 0 Mx = 0; при z1 = a Mx = qa2.

II участок CB: 0 < z2 < 2a. Начало координат перенесено в начало участка С (рис. 3.11).

На этом участке

/t3_7.gif

при z2 = 0 Q = qa, Mx = -qa2;

при z2 = 2 Q = -qa, Mx = qa2.

/3_10.gif/3_11.gif

На 2-м участке в уравнении моментов аргумент z2 имеет 2-ю степень, значит эпюра будет кривой второго порядка, т.е. параболой. На этом участке поперечная сила меняет знак (в начале участка +qa, а в конце -qa), значет на эпюре Mx будет экстремум в точке, Q = 0. Определяем координату сечения, в котором экстремальное значение Mx, приравнивая нулю выражение поперечной силы на этом участке.

/t3_8.gif

Определяем величину экстремального момента (с учетом знака):

/t3_9.gif

III учаток BD: 0 < z3 < a. Начало координат на третьем участке помещено в крайней правой точке (рис. 3.12).

/3_12.gif

Здесь Q = qa = const; Mx = -qa*z3; при z3 = 0 Mx = 0; при z3 = a Mx = -qa2.

4. Строим эпюры Q и Mx (рис. 3.13, б и в).

/3_13.gif

5. Проверка построения.


Внутренние силы. Метод сечения